

1 July to 30 September 2017 - Quarter 3 Environmental Monitoring Results Summary

Name of Mine	Northparkes Mines
Name of Leaseholder and Mine Operator	CMOC Mining Pty Ltd
Mining Leases	ML 1247, ML 1367, ML 1641 and 1743
Environment Protection Licence	EPL 4784
Development Consent	PA11-0060, (Mod 1-3)

Reviewed by	Chase Dingle
Title	Superintendent – Community, Environment & Farming
Date Signature	C- 23/10/17
Approved by	Stacey Kelly
Title	Manager – People, Safety and Environment
Date	23 OCTOBER 2017
Signature	8 M M

1. SCOPE OF REPORT

This report provides a summary of monitoring results for the period from 1 July 2017 to 30 September 2017. This monitoring is undertaken in accordance with the Environmental Monitoring Program (available at www.northparkes.com.au). Details of air quality, noise and water monitoring locations are available in the Environmental Monitoring Program.

2. AIR QUALITY

The air quality monitoring program utilises PM_{10} (beta attenuated monitors), TSP's (high volume air samplers (HVAS)) and depositional dust gauges. Monitoring locations are strategically positioned around the mine lease and neighbouring properties. TSP and PM_{10} monitoring has been undertaken at three nearby farm residences Hubberstone, Milpose and Hillview. A summary of the monitoring results are provided below.

2.1 PM₁₀

PM10 monitoring results for the 'Hubberstone', 'Milpose' and 'Hillview' monitoring locations, for the reporting period, are displayed in Figure 1, Figure 2 and Figure 3 respectively. The criteria for exceedances (as nominated in the Approval), is >30 μ g/m³ for the annual average and >50 μ g/m³ for a 24-hour monitoring period.

Monitoring results for all three locations, were under the air quality criteria required by the approval. The missing data for each of the locations was attributed to power surges, most likely the result of nearby lightning strikes, damaging equipment and/or equipment failure due to aging equipment.

The annual average PM10 levels recorded at all PM10 monitoring locations are below the predicted levels within the EA (20 $\mu g/m^3$).

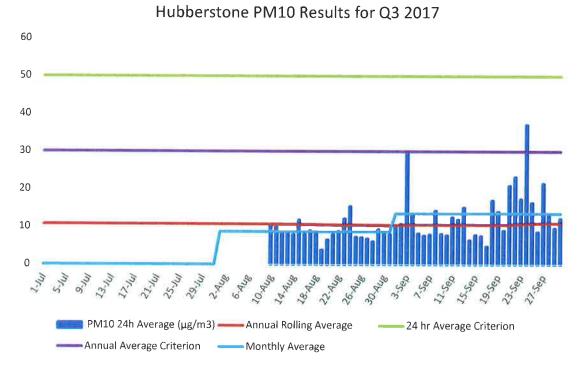


Figure 1: Hubberstone

Milpose PM10 Results for Q3 2017

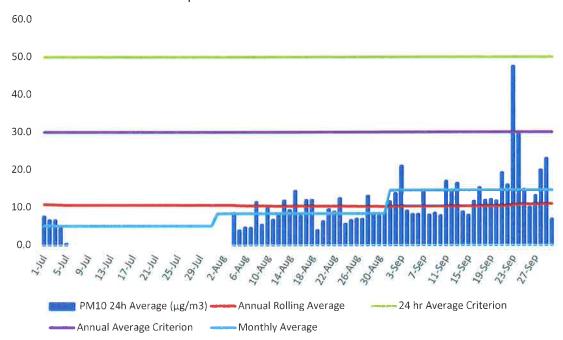
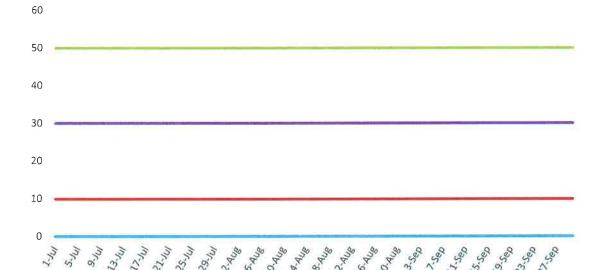



Figure 2: Milpose

Hillview PM10 Results for Q3 2017

Figure 3: Hillview

2.2 TSP

All recorded dust levels at all TSP monitoring locations were under the required criteria set by the Approval (90 $\mu g/m^3$) for the Q3 2017 monitoring period. Results are presented in Figure 4, Figure 5 and Figure 6 respectively. The annual average TSP dust levels recorded at all TSP monitoring locations are below the predicted levels within the EA (50 $\mu g/m^3$).

--- 24 hr Average Criterion

PM10 24h Average (μg/m3) ——Annual Rolling Average

— Annual Average Criterion — Monthly Average

The missing data for each of the locations was attributed to power surges, most likely the result of nearby lightning strikes, damaging equipment and/or equipment failure due to aging equipment.

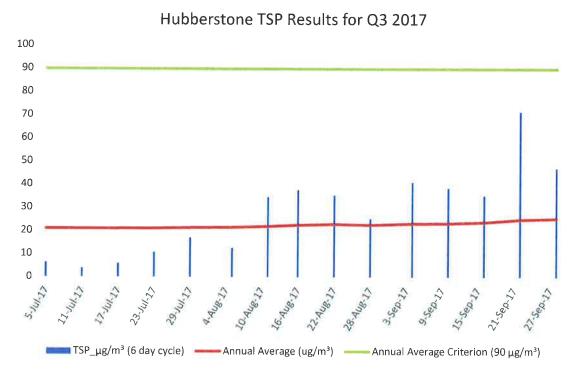


Figure 4: Hubberstone

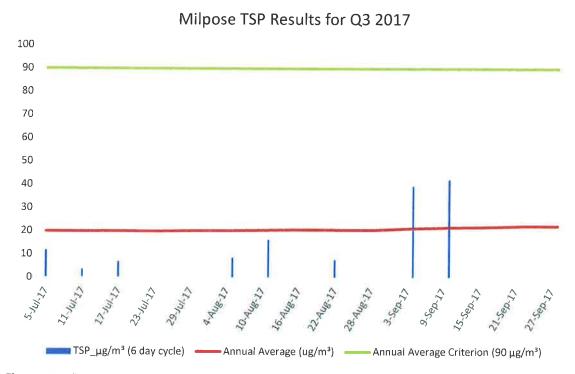


Figure 5: Milpose



Figure 6: Hillview

2.3 Depositional Dust

Depositional dust gauges record the total of deposited dust for a month long period and are a useful measure of broad scale changes to the local air quality.

Eleven depositional dust gauges are located across the mining lease and neighbouring residential properties to monitor atmospheric dust. A summary of the monthly monitoring results at each monitoring location are presented in Figure 7, Figure 8 and Figure 9 respectively,

The indicative rolling average for all locations are below the long-term impact assessment criteria, complying with the conditions of the Approval.

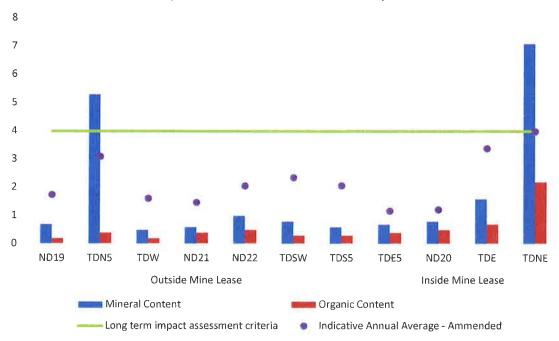


Figure 7: July depositional dust results for all locations

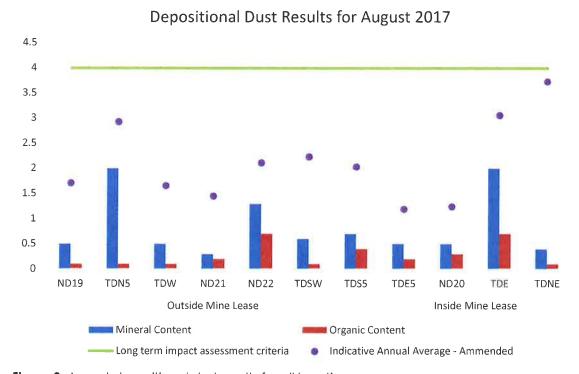


Figure 8: August depositional dust results for all locations

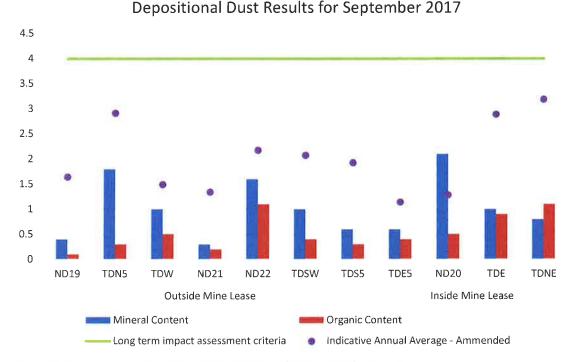


Figure 9: September depositional dust results for all locations

3. WATER

3.1 Overview

Water management at Northparkes is undertaken in accordance with approved management plans, prepared in accordance with Approval. All water samples are analysed at an independent National Association of Testing Authorities (NATA) accredited laboratory

Surface water quality monitoring is undertaken at Northparkes specifically within the three defined water management systems of;

- Clean water management system, which includes farm dams and watercourses;
- Dirty water management system, which includes settlement ponds; and
- Contaminated water management system, which includes all aspects of ore processing, and retention ponds.

CMOC's groundwater monitoring program aims to identify any changes to the natural groundwater system as a result of mining operations and ensure compliance with the Approval. It focuses on potential impacts to environmental assets and groundwater users in the area surrounding Northparkes.

Monitoring results are assessed and interpreted utilising historical trend analysis and internal water quality criteria and trigger levels to identify potential changes.

3.2 Quarterly Monitoring Analysis

Water quality monitoring was successfully carried out for the reporting period with no significant changes to the pH, EC or copper concentrations for all locations. Due to below average rainfall prior to monitoring, many locations were deemed dry and unable to be sampled. A summary of the monitoring results at each sampled location are presented in Tables 1-8 below.

Table 1: Process Water System

	RP1	RP2	RP3	RPA	RPS	APA	897	868	PPUO	0144	2100	2100	71 00	0100
H	8.47	8.47 8.73			8.5	8.3	8.37	8.29	8.4	8.13	8.37	8.3	2	8.2
EC (uS/cm)	257	1390	2137	1039	499	1005	776	1215	1490	551	975	3470		3710
Cu (mg/L)	0.322	0.019	0.218	0.412	0.073	0.010	0.019	0.043	0.031	0.174	0.237	0.182	0.014	0.019

	RP20	RP21	RP23	RP26	RP27	RP29	RP30	RP32	RP33	GTI	GTZ	PWD	SD1	SD2	CALOOLA PIT
H	9.72	8.58	8.32	8.83	8.41		8.16	8.56		1.89		7.89	8.29	8.05	8.5
EC (uS/cm)		1717	357	820	2307	331	517	200			837	4790	2720	10701	1810
Cu (mg/L)		0.031	0.063	0.180	0.014	0.016	0.016	0.022	0.022			0.009		0.177	0.021

Table 2: Sediment Ponds

	SP3	SP4	SP10	SP15
μd			9.05	
EC (uS/cm)			293	
Cu (mg/l)			0.100	
TDS (mg/L)	1710	422	26	372

Table 3: Watercourses

	WC1	WC2	WC3	WC4	WC7	WC11	WC12	WC14
Hd	8.6	89.8			9.12		8.7	
EC (uS/cm)	141	148			169		109	
Cu (mg/L)	0.02	0.05			0.03		0.042	
TDS (mg/L)			1710	422		26		372

Table 4: Farm Dams

	FD4	FD5	FD6	FD7	FD11	FD13	FD16	FD18	FD21	FD25	FD26	FD27
Н	8.65	8.84	8.55	9.47	8.5		8.7	8.47	9.54	9.3	8.6	8.84
EC (uS/cm)	252	85	156	97	241		86	1450	271	145	266	282
Cu (mg/t)	0.03	0.02	0.008	0.015	0.07		0.029	0.01	0.01	0.010	0.022	0.013
TDS (mg/l)			1710	422		26	372					

Table 5: TSF Bores

	The state of the s				
	MB1	MB2	MB3	MB5	MB6b
ΡΗ	7.33	7.28	6.75	6.97	7.18
EC (uS/cm)	5470	9610	22030	23960	11890
Cu (mg/l)	0.032	0.011	0.026	0.012	0.003

Table 6: Opencut Bores

COLOGICAL STATE		3						
	W14	W19	W20	W21	W22	W23	W24	W25
PH	7.16	7.83	7.33	7.8	7.16	7.7	8.39	8.65
EC (uS/cm)	10110	5490	14500	13300	17750	15350	1639	1455
Cv (mg/l)	0.012	0.015	0.014	0.016	0.016	90:0	0.008	0.011

Table 7: Underground Bores

	P101	P102	P103	P139	P145	P149	MB17	MB18	M819	MB20
H	7.7	86.9	9.37	7.2	8.81	68.9	7.95	8.35	7.8	7.7
EC (uS/cm)	9717	25006	24547	28400		28200	849		0908	11230
Cu (mg/l)	0.037	0.042	0.014	0.005	0.012	0.128	0.018	0.151	0.022	0.038

0.038

Table 8: Regional Bores

	Far Hillier	Wright	Moss
FH.	7.5	7.73	7.47
EC (uS/cm)	449	743	2372
Cv (mg/l)	0.017	0.032	0.042

4. NOISE AND VIBRATION

Operational noise is managed by CMOC in accordance with the approved Noise Management Plan (NMP). The NMP covers all operational activities with the potential to generate noise at Northparkes. It details specific noise management and mitigation measures, outlines monitoring and reporting requirements and provides clear definition of the roles and responsibilities for noise management.

4.1 Overview

CMOC undertakes a noise monitoring program at four locations on privately owned properties outside the mining leases. The program consists of both operator-attended and unattended surveys at the four nearest occupied residences 'Hubberstone', 'Milpose', 'Lone Pine' and 'Hillview'.

Operator-attended noise measurements and recordings are undertaken at four locations on privately owned properties outside the mining leases in order to quantify the intrusive noise emissions from construction and of general mine activity as well as the overall level of ambient noise. This noise monitoring was undertaken by an independent and suitably qualified noise professional.

4.2 Quarterly Monitoring Analysis

Attended noise monitoring was undertaken from the 20th to the 22nd of September 2017 during favourable atmospheric conditions. Several measurements were impacted by non-NPM related noise, specifically, insect noise. Nevertheless, attended noise monitoring results indicate that noise emissions from the mine site comply with the project approval criteria. A summary of the monitoring results at each monitoring location are presented in Tables 9-11 below.

Table 9: Attended noise monitoring results (daytime)

		LAI	LAIO	L _{Aeq}	LASO		
Location	Date and Time	dB	dB	dB	dB	Compliance?	Notes
Hillview	20/09/17 12:50	40	35	32	27	Yes	Wind gusts. Occasional truck
	20/09/17 13:49	39	34	33	29	Yes	noise. Continuous bird
	20/09/17 14:07	39	35	33	29	Yes	and insect noise. Mine inaudible.
Hubberstone	20/09/17 14:53	41	38	31	34	Yes (adj.)	Wind gusts.
	20/09/17 15:14	44	41	33	36	Yes (adj.)	Continuous bird and insect noise
	20/09/17 15:34	43	41	35	37	Yes (adj.)	necessitating adjustment. Mine audible.
Milpose	20/09/17 17:44	38	30	28	21	Yes	Mine inaudible. Continuous frog
	21/09/17 17:08	45	43	27	29	Yes (adj.)	noise.

	21/09/17 17:33	46	45	27	31	Yes (adj.)	Mine barely audible. Continuous insect noise necessitating adjustment. Occasional domestic and bird noise.
Lonepine	20/09/17 16:06	42	37	28	33	Yes (adj.)	Continuous bird
	21/09/17 16:42	45	37	29	31	Yes (adj.)	and insect noise necessitating
	21/09/17 17:00	49	46	28	34	Yes (adj.)	adjustment. Mine inaudible.

Table 10: Attended noise monitoring results (evening)

TODIC	e 10: Attended noise	HIOHIIO	ning result	2 (everill)	9)		
Location	Date and Time	L _{A1} dB	L _{A10} dB	L _{Aeq} dB	L _{A90} dB	Compliance?	Notes
Hillview	20/09/17 20:00	37	24	25	15	Yes	Continuous insect
	20/09/17 20:23	34	21	24	16	Yes	noise. Mine
	20/09/17 20:42	37	26	24	14	Yes	inaudible.
Hubberstone	21/09/17 19:51	33	31	29	26	Yes	Continuous from
	21/09/17 20:10	31	29	27	25	Yes	Continuous frog noise. Mine inaudible.
	21/09/17 20:34	31	25	27	22	Yes	
Milpose	21/09/17 18:41	41	38	34	25	Yes	
	21/09/17 19:01	41	38	34	25	Yes	Continuous frog noise. Mine inaudible.
	21/09/17 19:21	41	38	34	25	Yes	
Lonepine	20/09/17 18:11	55	54	27	51	Yes (adj.)	Continuous bird, insect and frog
	20/09/17 18:45	53	52	26	47	Yes (adj.)	noise necessitating adjustment.
	20/09/17 19:05	49	47	27	40	Yes (adj.)	Occasional dog barking. Mine inaudible.

Table 11: Attended noise monitoring results (night)

Location	Date and Time	L _{A1}	L _{A10}	L _{Aeq} dB	L _{A90}	Compliance?	Notes
Hillview	22/09/17 01:53	32	20	22	18	Yes	
	22/09/17 02:10	33	20	22	18	Yes	Mine barely audible.
	22/09/17 02:26	35	22	23	19	Yes	dodibio.
Hubberstone	21/09/17 22:00	35	25	24	17	Yes	

	21/09/17 22:27	28	21	19	15	Yes	Occasional dog barking.
	21/09/17 22:45	40	22	26	15	Yes	Continuous frog noise. Mine inaudible.
Milpose	22/09/17 00:39	40	37	34	27	Yes	Continuous frog
	22/09/17 00:56	42	38	35	26	Yes	noise. Mine slightly
	22/09/17 01:13	47*	43	27	28	Yes (adj.)*	audible.
Lonepine	21/09/17 23:20	46*	23	30	14	Yes (adj.)*	
	21/09/17 23:42	34	20	23	14	Yes	Occasional dog barkina.
	22/09/17 00:01	28	15	19	14	Yes	S G. Killig.